
KP/PP 24/04/06

Scaling Jena in a commercial environment: The Ingenta MetaStore Project

Priya.Parvatikar@ingenta.com and Katie.Portwin@ingenta.com

The Ingenta 1 MetaStore is a case study in using Jena API 2 . to implement a triplestore on a very
large scale, within a commercial environment. This paper consists of two sections: one describes
the MetaStore project itself, the other focuses on experiences with Jena. The first section explains
what commercial and technical problems the project was designed to solve, and why developers
chose to use an RDF triplestore to solve them. The focus is on system architecture and data
modelling. The second section explains why developers chose Jena for the project, and then
discusses some problems encountered while using Jena. In general, a Jena/PostgreSQL
triplestore scaled up to our 200 million triple requirement. Quantitative results indicate that, given
certain optimisations, the Jena implementation of SPARQL3 does scale.

Keywords: RDF, Triplestore, Jena, Scalability, SPARQL

1. The Project
Figure 1: MetaStore Architecture Diagram

1.1 Aim
The aim of the MetaStore Project is to merge Ingenta's huge, heterogeneous set of metadata into a
single centralised repository, with a highly flexible data model. The repository will be the
backbone of the IngentaConnect website. It will interface with existing applications and be a

1 http://www.ingentaconnect.com
2 http://jena.sourceforge.net/
3 http://www.w3.org/TR/rdf-sparql-query/

1

RDF Triplestore
(PostgreSQL)

Master

Slave Slave

XML API (read only) (Jena)

Primary
Loader
(Jena)

JMS Queue

IngentaConnect Other Clients

JMS Queue Other
Systems

Customer
Data

Other
loaders /

 enhancers

mailto:Priya.Parvatikar@ingenta.com
http://www.ingentaconnect.com/
http://www.w3.org/TR/rdf-sparql-query/
http://jena.sourceforge.net/
http://www.ingentaconnect.com/
mailto:Katie.Portwin@ingenta.com

KP/PP 24/04/06

platform for future development. An example core use case of the new repository is to produce
metadata suitable for transformation into an “abstract page” on the IngentaConnect website, such as
that shown in Figure 2.

Figure 2: Core use case: IngentaConnect Abstract Page

1.2 Background
The IngentaConnect website provides online access to scientific research publications including
journal articles, book, and statistics databases. It contains electronic metadata for 4.3 million online
articles, and supports about 2 million sessions per month.

1.3 Problem
Currently, IngentaConnect metadata is distributed across a variety of data stores, including various
relational database platforms and an SGML file-based store. Synchronising and linking across these
data stores is a problem. Furthermore, our publisher clients are increasingly producing a varied
array of electronic publications: for example, books, supplementary material, "virtual journals" and
multi-lingual publications. Extending existing systems to support these new types of data tends to
involve significant development effort and modelling compromises.

1.4 Requirements

2

KP/PP 24/04/06

1. Centralised store. Metadata from a variety of existing data stores will be integrated and
stored in unified way. A variety of existing applications will need to interact with it.

2. Flexible data model. The repository should have the ability to store all existing content
items (including articles, journals, authors, etc), and also be extensible in the future as new
data requirements arise.

3. Scalable. The repository must support our very large dataset.

4. Query Performance. The repository will be the backbone of the IngentaConnect website.
When a user is viewing an abstract page4 on IngentaConnect, she expects to see the abstract
of the article, along with other metadata such as authors, keywords, references, and expects
to receive the page quickly. At peak usage (weekday mornings GMT), the website services
four requests for abstract pages per second. Some caching will take place, but as an aim/a
benchmark, the repository should be able to service about four article queries per second.

5. Distributable. Ingenta has distribution agreements with partner organisations. Ingenta and
the partner need to agree a suitable XML format for transmission, which they can both
understand easily. Therefore the new data model should conform to industry standards
wherever possible.

6. Integratable. Existing applications will need to be changed to use the repository as their
data source, and future applications will be developed on the platform. Other application
programmers must be able to interact with the repository in a simple way, and retrieve data
suitable for their needs easily.

Based on these requirements, an RDF triplestore was chosen for this project. The RDF model is
naturally flexible, and standard vocabularies such as Dublin Core5 can be used to meet the
distributability requirement. Centralisation was achieved by careful modelling, followed by bulk
loading. Scalability and query performance were key goals in the selection of the RDF engine for
the project – as discussed later. Integration, scalability, and query performance were addressed in
the system architecture - below.

1.5 Architecture

The master triplestore is at the core of the MetaStore framework (Figure 1). As a centralised store
replacing multiple legacy databases, it implements the shared database6 pattern. The project
developers undertook a round of extensive, careful modelling in consultation with other application
developers and database owners across the organisation, in order to design a model which would
support all existing functionality and provide entry points for integration.

As shown in Figure 1, the database server architecture is master-slave. This architecture provides
reliability through redundancy. It also ensures consistent query performance, and cuts down on
concurrency problems, as data is loaded on the master only, while clients query the slaves only.
The system scales easily as more slaves can be added. By using an RDF API which uses a standard
RDBMS backend, the system leverages the mature slaving functionality of the database
(PostgreSQL 7). With a native store, it would have been necessary to develop a custom replication
strategy.

4 http://www.ingentaconnect.com/content/apl/ebt/2005/00000005/00000011/art00001
5 http://dublincore.org/
6 http://www.awprofessional.com/articles/article.asp?p=169483&seqNum=3&rl=1
7 http://www.postgresql.org/

3

http://www.postgresql.org/
http://www.awprofessional.com/articles/article.asp?p=169483&seqNum=3&rl=1
http://dublincore.org/
http://www.ingentaconnect.com/content/apl/ebt/2005/00000005/00000011/art00001

KP/PP 24/04/06

A loader program subscribes to a JMS8 queue 9 of newly arrived data. Each day, about 500 articles
are loaded. The loader validates, transforms and inserts the new resource using the Jena API. At
this point the resource is also assigned a unique identifier. Only after it has successfully been
loaded into the repository are notifications sent to other systems (for example Search Indexers, Full
Text Delivery Servers). In addition to this, other applications (for example, External Reference
Resolvers, Spot Updaters, Sequence Generators) also regularly make additions, updates and deletes
to the repository.

Clients query the store using a REST10-ful XML API. The advantage of providing this interface is
that all the RDF Engine (Jena/Java) code is encapsulated. Application programmers across the
organisation can produce language-agnostic, engine-agnostic clients, with little consultation with
the repository developers.

Figure 3: Sample RDF/XML for an Article

1.6 Modelling with RDFS11

Existing vocabularies were used where possible: Dublin Core, PRISM12 and FOAF13 . Custom

8 http://java.sun.com/products/jms/
9 http://www.awprofessional.com/articles/article.asp?p=169483&seqNum=5&rl=1
10 http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
11 http://www.w3.org/TR/rdf-schema/
12 http://www.prismstandard.org/
13 http://www.foaf-project.org/

4

http://www.foaf-project.org/
http://www.prismstandard.org/
http://www.w3.org/TR/rdf-schema/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.awprofessional.com/articles/article.asp?p=169483&seqNum=5&rl=1
http://java.sun.com/products/jms/

KP/PP 24/04/06

vocabularies were developed where necessary. The new vocabularies in the Ingenta namespace,
including “branding”, “identifiers”, “structure”, extend the standards where possible. For example,
struct:Author extends foaf:Person, and ident:infobike extends
dc:identifier. This range is demonstrated in Figure 3 - sample RDF/XML for an Article (the
core use case).

The data model is strongly hierarchical. Publishers have journals, journals have issues, issues have
articles. All these resource types extend struct:Part and are linked with the
prism:isPartOf property. Query performance testing results presented later should be
interpreted in the context 14 of this hierarchical model.

In its current state, the RDFS model includes 28 Classes and 72 Properties, 4 /18 of which
respectively are from the standard vocabularies. This model continues to evolve.

1.7 Scale
Headers and references for ~4.3 million articles have been loaded into the repository. This has
resulted in ~200 million rows in jena_g1t1_stmt, and the resulting database size on disk is
65Gb. Thus on average, each article is responsible for ~ 47 triples.

The jena_long_lit table contains approximately 4.5 million records – these mainly represent
article abstracts and some long article titles. The jena_long_uri table has approximately 0.14
million records.

2. Experiences with Jena

2.1 Why Jena?
The first stage of the project was to evaluate and choose an RDF engine. Developers investigated:

• Jena with a PostgreSQL backend
• Sesame with a PostgreSQL backend
• Kowari with a native Kowari backend

With the limited timeframe and the versions of APIs available at that time, (early 2005,) Jena was
chosen for the following reasons:
• Java – Ingenta has in-house expertise in Java. In a commercial environment, code

maintainability years into the future is a paramount concern.
• RDBMS backend – A relational database was preferred over a native store because of the built-

in support for replication, and trusted backup mechanism. Jena has support for a wide range of
database platforms; including PostgreSQL which is Ingenta's standard database.

• Usability - The Jena API is easy to use and stable. The API is well-documented and the
mailing lists are active.

• Performance – Preliminary load-testing indicated that Jena is scalable with regard to query
performance. In contrast, the cost of opening the model in Sesame became prohibitive with
large numbers of triples (20 minutes with 100 million triples).

• Scalability – Preliminary load-testing also demonstrated that Jena is scalable with regard to
memory usage. With Kowari, memory problems were encountered at 25 million triples.

• Debuggable - The raw data can be viewed through the PostgreSQL client. This was useful

14 http://jeenbroekstra.blogspot.com/2006/02/pitfalls-in-benchmarking-triple-stores.html

5

http://www.kowari.org/
http://www.openrdf.org/
http://www.postgresql.org/docs/
http://jena.sourceforge.net/
http://jeenbroekstra.blogspot.com/2006/02/pitfalls-in-benchmarking-triple-stores.html

KP/PP 24/04/06

while developing and debugging.

2.2 Challenges

2.2.1 Insert Performance - Batching
Early versions of the loading program inserted a single article at a time. In one, the developer made
API calls for each triple; in another, the developer created a chunk of RDF/XML for a single article,
and inserted that.

However, as the size of the repository increased beyond 0.5 million articles, these approaches
proved to be too slow. This may have been due to database cleanup or index rebuilding after each
insert. Turning off the index-rebuild, however, was not a suitable solution, since it caused
subsequent queries to be inefficient. Any reduction in query performance impacts on loading
performance too – in order to establish cross-links, querying the existing data is an essential part of
the loading mechanism.

Others have suggested turning off duplicate checking in Jena 15 and instead, forcing the loading code
to check for duplicates. This could have been viable for a single one-off load. However, with
frequent ongoing loading, comparing the existing 65 Gb store with the new batch would be
problematic.

Finally, a batching approach to loading the data was developed. RDF/XML was created for a
batch of several thousand triples at a time, and then added to the repository in one insert command.

Figure 4: Effect of batching on Insert Performance

15 http://nuin.blogspot.com/2006/02/jena-tip-optimising-database-load.html

6

1

10

100

1000

0 10000 20000 30000 40000 50000

batch size (triples)

in
se

rt
 ti

m
e

pe
r

tr
ip

le
 (

m
s)

http://nuin.blogspot.com/2006/02/jena-tip-optimising-database-load.html

KP/PP 24/04/06

Batching substantially improved the loading performance, (as shown in Figure 4). Batch sizes of
around 5000 triples are optimal – approximately 5ms per triple. Beyond this point there are
diminishing returns to larger batches, and memory errors become a risk.

The cost of batching is extra complexity in the loading code. For example, while creating data for
each new article, various searches are performed on existing data. With the batching approach,
these queries had to be extended to check within the current batch as well as in the repository.

2.2.2 Ontologies - Memory Problems
Initially, the project design included OWL inferencing in the main model:
• To reduce size of store by inferring some properties.
• To avoid hardcoding relations - these would be inferred instead, thereby making it easier to

update data in the store.
• To facilitate validation of key properties in the data.

However, the Jena implementation of OWL did not scale for a dataset of this size 16 . In fact, the
JVM ran out of memory by 11 million triples.

It was therefore not possible to use inferencing to reduce the size of the store – for example, it could
not be used to infer inverse relations such as prism:references and
prism:isReferencedBy. One option to achieve the same effect would be at the program
level – for instance query rewriting. Another is to explicitly load both sides of the relation. For the
core use case, (delivering everything needed for an abstract page) the latter approach was taken. In
general, and particularly in areas where performance was critical, data was pre-calculated wherever
possible (see section 3.2 for further discussion).

It may still be possible to make use of the OWL ontology for data validation purposes – that is, on
small batches of data during the loading process; this is a future goal.

2.2.3 The Object Model – encapsulating Jena code / limiting flexibility
The Jena API allows the programmers to talk to the store in terms of triples. However, to promote
re-use and encapsulation of the Jena code, application programmers need to talk in terms of objects
like Book and Article. An object model was developed which closely mirrored the schema, using
interfaces to capture multiple inheritance. A FinderDAO and a Factory17 class were developed for
each data object type, to encapsulate all the Jena/RDF code needed to find a resource, and construct
an instance of the appropriate class. The instance would have not only literal values but also
references to other instances; for example, a retrieved Article instance needs a reference to its
parent Issue instance, and grandparent Journal instance, because many useful properties are in
fact held higher up the hierarchical model.

The intended goal of encapsulating all Jena code in Factory classes was to isolate interaction with
the triplestore from other application logic in the loading and querying programs. The disadvantage
of course is inflexibility: developers working in terms of Article, Journal, Book – instead of
in terms of Triple – may not see the benefits of the underlying RDF model.

16 http://groups.yahoo.com/group/jena-dev/message/20582
17 http://en.wikipedia.org/wiki/Factory_method_pattern

7

http://en.wikipedia.org/wiki/Factory_method_pattern
http://groups.yahoo.com/group/jena-dev/message/20582

KP/PP 24/04/06

Other problems encountered included:
• Developing a clean implementation hierarchy to match the multiple inheritance of the

Interface model.
• Limiting recursion depth and avoiding infinite loops while populating instances (For example,

article A prism:references article B , article B prism:references article A etc.)

2.2.4 Prefixes – Suggested addition to Schemagen
Jena's Schemagen18 utility makes resource and property names from an RDFS schema available to
Java application programmers as static variables. This promotes maintainable code – essential in
our environment. However, the current schemagen does not include preferred namespace prefix.
For this project, schemagen was extended to interpret the preferredNamespacePrefix
property from the VANN19 vocabulary.

For example in the STRUCTURE schema:

<vann:preferredNamespacePrefix>struct</vann:preferredNamespacePrefix>

Thus, while constructing an RDF/XML snippet for a Publisher resource, the prefix could be used as
follows:

publisherDoc.createElement(
STRUCTURE.getPrefix() + ":" + STRUCTURE.Publisher.getLocalName()

);

2.3 Performance Testing SPARQL

SPARQL queries may be executed within a Jena program using the ARQ API20. Performance tests
were carried out on an Intel(R) Xeon(TM) server (CPU 3.20GHz 6 SCSI Drives) with 4G RAM,
running PostgreSQL 7 and Jena 2.3, on Debian.

The basic SPARQL query used for testing was of the form:

Example 1: Standard SPARQL query (Title-type only)
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX struct: <http://metastore.ingenta.com/ns/structure/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX linking: <http://metastore.ingenta.com/ns/linking/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX prism: <http://prismstandard.org/namespaces/1.2/basic/>
PREFIX ident: <http://metastore.ingenta.com/ns/identifiers/>
SELECT ?title ?issue ?article
WHERE {
?title rdf:type struct:Journal .
?title dc:identifier <http://metastore.ingenta.com/content/issn/02670836> .
?issue prism:isPartOf ?title .
?issue prism:volume ?volumeLiteral .
?issue prism:number ?issueLiteral .
18 http://jena.sourceforge.net/how-to/schemagen.html
19 http://vocab.org/vann/
20 http://jena.sourceforge.net/ARQ/app_api.html

8

http://jena.sourceforge.net/ARQ/app_api.html
http://vocab.org/vann/
http://jena.sourceforge.net/how-to/schemagen.html

KP/PP 24/04/06

?article prism:isPartOf ?issue .
?article prism:startingPage ?firstPageLiteral .
FILTER (?volumeLiteral = "20")
FILTER (?issueLiteral = "4")
FILTER (?firstPageLiteral = "539")
}

The standard query is a good demonstration example because it ranges over several resources in the
model, and filters based on literal values. Furthermore, it is a realistic query which might be
performed on the repository; a client application looking for an Article in the store would probably
have access to bibliographic metadata such as start page, ISSN, volume, etc. (In fact, this query
was used in an early version of the loading program.) The literal values were chosen such that a
result set of exactly one resource would be returned in each instance.

Note the inclusion of the “?title rdf:type..” triple. In fact, early attempts at composing
the basic article query did not include this statement, and the developers immediately noticed a very
serious problems with performance. Developers then experimented with several other versions of
the query, including and excluding rdf:type statements, and experimenting with filters. Formal
testing was then conducted.

Two of other logical versions are presented here, since they are illustrative: The first is a version
with rdf:type restrictions for every resource:

Example 2: All-Types SPARQL query
SELECT ?title ?issue ?article
WHERE {
?title rdf:type struct:Journal .
?title dc:identifier <http://metastore.ingenta.com/content/issn/02670836> .
?issue prism:isPartOf ?title .
?issue rdf:type struct:Issue .
?issue prism:volume ?volumeLiteral .
?issue prism:number ?issueLiteral .
?article prism:isPartOf ?issue .
?article rdf:type struct:Article .
?article prism:startingPage ?firstPageLiteral .
FILTER (?volumeLiteral = "20")
FILTER (?issueLiteral = "4")
FILTER (?firstPageLiteral = "539")
}

The other is a version without any of the rdf:type restrictions:

Example 3: No-types SPARQL query
SELECT ?title ?issue ?article
WHERE {
?title dc:identifier <http://metastore.ingenta.com/content/issn/02670836> .
?issue prism:isPartOf ?title .
?issue prism:volume ?volumeLiteral .
?issue prism:number ?issueLiteral .
?article prism:isPartOf ?issue .
?article prism:startingPage ?firstPageLiteral .
FILTER (?volumeLiteral = "20")
FILTER (?issueLiteral = "4")
FILTER (?firstPageLiteral = "539")
}

Results:

9

KP/PP 24/04/06

Size of store (millions of
triples) 2 9 77 99 152

NO types (ms) 1404 21237 123547 * *
ALL types (ms) 598 3114 * * *
TITLE type only (ms) 385 987 1048 1128 1465

(* = never returns)

Figure 5 SPARQL query performance vs. repository size

Performance of the standard query is represented by the blue line on Figure 5. It can be seen that
performance deteriorates slowly as store size increases. Notwithstanding this point, SPARQL
performance is still reasonable, even with a very large store: at 150 million triples, it returns in less
than 1.5 seconds.

However, the all-types and the no-types versions performed very poorly with the larger store sizes.
All three queries are logically equivalent, but the addition or removal of conditions has an immense
adverse effect on performance. This means that there is no simple conclusion: it is not the case that
more statements improve performance, nor that fewer statements improve performance.

In fact, the explanation lies in the way the PostgreSQL query planner chooses to execute the final
SQL queries. For example, in the no-types query, a sequential scan is performed. Further
information can be seen in Appendix 1.

In this case, a suitable optimisation was found by trial-and-error. The development of a strategy

10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 20 40 60 80 100 120 140 160

Size of store: (millions of triples)

T
im

e
(s

ec
s)

NO types (secs) ALL types (secs) TITLE type only (secs)

KP/PP 24/04/06

for optimising SPARQL queries (with PostgreSQL) in the general case, is a goal for future research.

However, the following recommendations can be made at this stage:
 A. It is worth experimenting with different versions of a SPARQL query.
 B. Developers may need to investigate at the RDBMS level, so it is worth choosing an database
with which the organisation has expertise.

3. Current Status

3.1 Recent Developments

The MetaStore has been loaded with 4.3 million article headers, through an initial bulk loading
process. Processes have also been put in place to ensure that the repository stays in synch with the
ongoing daily changes to data.

Books – a deviation from the standard journal-issue-article data model – have been independently
modelled 21 and loaded into the store.

A RESTful query API has been developed in order to allow client applications to start using the
MetaStore. Given a resource identifier, the API returns all the data associated with that resource in
XML format (See Figure 3). Every resource in the MetaStore has been assigned a primary
identifier. This identifier has been designed to be a stable and unique URI in the following style:
http://metastore.ingenta.com/content/ [type] / [auto-incremented
number]

Example 4: Stable primary identifiers
http://metastore.ingenta.com/content/articles/1
http://metastore.ingenta.com/content/titles/42

The MetaStore developers have attempted to establish effective query strategies for various types of
applications depending on their requirements.

For cases where query performance is critical, it has been decided that identifier-based queries are
used as far as possible. However, client systems are unlikely to have easy access to the primary
identifier and usually have their own identifiers in their databases. Porting all such existing
identifiers into the repository provides a simple, powerful integration hook.

Example 5: Predictable secondary identifiers
<struct:Article rdf:about="http://metastore.ingenta.com/content/articles/42">
 <linking:genlinkerRefId rdf:resource="genlinker://refid/5518325"/>
 <ident:infobike
rdf:resource="infobike://maney/mint/2003/00000112/00000003/art00001"/>

<dc:identifier
rdf:resource="http://metastore.ingenta.com/content/maney/03717844/v112n3/s1"/>

<ident:doi>10.1179/037178403225003582</ident:doi>
<ident:sici>0371-7844(20031201)112:3L.141;1-</ident:sici>

</struct:Article>

21 http://allmyeye.blogspot.com/2006/03/does-your-boy-scout-handbook-look-as.html

11

http://allmyeye.blogspot.com/2006/03/does-your-boy-scout-handbook-look-as.html
http://allmyeye.blogspot.com/2006/03/does-your-boy-scout-handbook-look-as.html

KP/PP 24/04/06

Some of these identifiers shown in Example 5, have the potential to be used by multiple clients and
they have been modelled using the dc:identifier property.

There are other identifiers that are relevant only for particular clients. For example
linking:genlinkerRefId is an article identifer in the legacy reference linking database.
Application-specific namespaces have been developed for such properties.

In addition, there are industry standard identifiers for example, DOI and SICI, that enable
integration with external partners.

The primary use case and the most important client to use the MetaStore is the IngentaConnect
application. In most cases, IngentaConnect will query the API using predictable identifiers. This
will ensure that the query performance scales to requirements.

For cases where query performance is not such a critical concern for example batch processing
applications or cases where identifiers are not sufficient for example reference matching
applications – SPARQL queries can be used where necessary. The developers have tried to identify
SPARQL queries that are useable - for example a query to get a list of all the publishers loaded into
the store- and queries that are not useable because of their slow performance – for example a query
to search on authors using a literal value.

Example 6: Useable SPARQL query
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX struct: <http://metastore.ingenta.com/ns/structure/>
SELECT ?pubid ?pubname
WHERE {
 ?pubid rdf:type struct:Publisher .
 ?pubid dc:title ?pubname .
}

Example 7: Unuseable SPARQL query
PREFIX struct: <http://metastore.ingenta.com/ns/structure/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX branding: <http://metastore.ingenta.com/ns/branding/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?au
WHERE {
 ?au rdf:type struct:Author .
 ?au foaf:family_name ?name
 FILTER (?name = "Zhu")
}

3.2 Current developments

The developers are currently investigating the use of SPARQL for specialised or experimental cases
– for example, merging 22 of MetaStore data with externally held data to produce a richer data set.

The developers are also still working on the integration of the MetaStore with other Ingenta
systems. The IngentaConnect developer team need to produce a “Table of Contents” for every issue
- this is a set of articles and is ordered. Therefore the articles belonging to an issue will need to be

22 http://allmyeye.blogspot.com/2006/04/amazon-ingenta-sparql-nifty.html

12

http://allmyeye.blogspot.com/2006/04/amazon-ingenta-sparql-nifty.html

KP/PP 24/04/06

represented by a sequence (rdf:Seq). These sequences will be pre-calculated and stored for
performance and simplicity.

The initial bulk loading of reference linking data into the store is also in progress. This data has
been modelled as a combination of standard (for example prism:references) and custom (for
example linking:HostingDescription) properties and classes.

In addition, the developers are working on the replication of the database – an important concern for
scalability (see section 1.5).

4. Conclusions

The Ingenta MetaStore case study demonstrates that Jena scales to 200 million triples. This paper
has explained why Jena is a good choice of RDF engine for a commercial triplestore
implementation. Some problems with Jena 2.3 in the context of a very large store were presented.
First, loading performance is a challenge, although one proven solution is a batching approach.
Second, inferencing using OWL is not currently scalable to a store of this size. Third, in a
commercial environment, it is useful to separate RDF/Jena code from other application logic, but
this approach brings its own costs. Finally, quantitative testing shows that it is possible to achieve
good SPARQL performance even with a very large store, but that queries should be carefully
optimised.

Acknowledgments

Leigh.Dodds@ingenta.com
Charlie.Rapple@ingenta.com

13

KP/PP 24/04/06

APPENDIX I SQL / Query Plan for the SPARQL performance testing /optimisation queries

Excerpts from the postgres logs showing the SQL generated by Jena, and query plans generated by
PostgreSQL.

1. Title Type Only
Select A0.Subj, A2.Subj, A3.Obj, A4.Obj, A5.Subj, A6.Obj From jena_g1t1_stmt A0, jena_g1t1_stmt A1,
jena_g1t1_stmt A2, jena_g1t1_stmt A3, jena_g1t1_stmt A4, jena_g1t1_stmt A5, jena_g1t1_stmt A6 Where
A0.Prop='Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type' AND
A0.Obj='Uv::http://metastore.ingenta.com/ns/structure/Title' AND A0.GraphID=1 AND A0.Subj=A1.Subj
AND A1.Prop='Uv::http://purl.org/dc/elements/1.1/identifier' AND
A1.Obj='Uv::http://metastore.ingenta.com/content/issn/1478422x' AND A1.GraphID=1 AND
A2.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf' AND A0.Subj=A2.Obj AND
A2.GraphID=1 AND A2.Subj=A3.Subj AND
A3.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/number' AND A3.GraphID=1 AND
A2.Subj=A4.Subj AND A4.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/volume' AND
A4.GraphID=1 AND A5.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf' AND
A2.Subj=A5.Obj AND A5.GraphID=1 AND A5.Subj=A6.Subj AND
A6.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/startingPage' AND A6.GraphID=1
 Nested Loop (cost=0.00..207796.39 rows=1 width=336)
 -> Nested Loop (cost=0.00..207790.37 rows=1 width=284)
 -> Nested Loop (cost=0.00..207784.34 rows=1 width=344)
 -> Nested Loop (cost=0.00..207778.32 rows=1 width=232)
 -> Nested Loop (cost=0.00..157951.71 rows=1 width=120)
 -> Nested Loop (cost=0.00..58298.49 rows=2 width=120)
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a0 (cost=0.00..36761.97 rows=847
width=60)
 Index Cond: ((obj)::text = 'Uv::http://metastore.ingenta.com/ns/structure/Title'::text)
 Filter: (((prop)::text = 'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type'::text) AND
(graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a1 (cost=0.00..25.41 rows=1 width=60)
 Index Cond: ((("outer".subj)::text = (a1.subj)::text) AND ((a1.prop)::text =
'Uv::http://purl.org/dc/elements/1.1/identifier'::text))
 Filter: (((obj)::text = 'Uv::http://metastore.ingenta.com/content/issn/1478422x'::text) AND
(graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a2 (cost=0.00..49824.98 rows=130 width=112)
 Index Cond: ((a2.obj)::text = ("outer".subj)::text)
 Filter: (((prop)::text = 'Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf'::text) AND
(graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a5 (cost=0.00..49824.98 rows=130 width=112)
 Index Cond: (("outer".subj)::text = (a5.obj)::text)
 Filter: (((prop)::text = 'Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf'::text) AND (graphid
= 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a3 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: ((("outer".obj)::text = (a3.subj)::text) AND ((a3.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/number'::text))
 Filter: (graphid = 1)
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a4 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: (((a4.subj)::text = ("outer".subj)::text) AND ((a4.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/volume'::text))
 Filter: (graphid = 1)
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a6 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: ((("outer".subj)::text = (a6.subj)::text) AND ((a6.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/startingPage'::text))
 Filter: (graphid = 1)
(27 rows)

2. All Types
Select A0.Subj, A2.Subj, A3.Obj, A4.Subj, A5.Obj, A8.Obj From jena_g1t1_stmt A0, jena_g1t1_stmt A1,
jena_g1t1_stmt A2, jena_g1t1_stmt A3, jena_g1t1_stmt A4, jena_g1t1_stmt A5, jena_g1t1_stmt A6,
jena_g1t1_stmt A7, jena_g1t1_stmt A8 Where A0.Prop='Uv::http://www.w3.org/1999/02/22-rdf-syntax-
ns#type' AND A0.Obj='Uv::http://metastore.ingenta.com/ns/structure/Title' AND A0.GraphID=1 AND
A0.Subj=A1.Subj AND A1.Prop='Uv::http://purl.org/dc/elements/1.1/identifier' AND
A1.Obj='Uv::http://metastore.ingenta.com/content/issn/13621718' AND A1.GraphID=1 AND
A2.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf' AND A0.Subj=A2.Obj AND
A2.GraphID=1 AND A2.Subj=A3.Subj AND
A3.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/volume' AND A3.GraphID=1 AND
A4.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf' AND A2.Subj=A4.Obj AND
A4.GraphID=1 AND A4.Subj=A5.Subj AND
A5.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/startingPage' AND A5.GraphID=1 AND
A2.Subj=A6.Subj AND A6.Prop='Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type' AND
A6.Obj='Uv::http://metastore.ingenta.com/ns/structure/Part' AND A6.GraphID=1 AND A4.Subj=A7.Subj
AND A7.Prop='Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type' AND
A7.Obj='Uv::http://metastore.ingenta.com/ns/structure/Article' AND A7.GraphID=1 AND A2.Subj=A8.Subj
AND A8.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/number' AND A8.GraphID=1

 Nested Loop (cost=0.00..207840.72 rows=1 width=336)
 -> Nested Loop (cost=0.00..207834.70 rows=1 width=456)

14

KP/PP 24/04/06

 -> Nested Loop (cost=0.00..207812.53 rows=1 width=396)
 -> Nested Loop (cost=0.00..207806.51 rows=1 width=284)
 -> Nested Loop (cost=0.00..207784.34 rows=1 width=344)
 -> Nested Loop (cost=0.00..207778.32 rows=1 width=232)
 -> Nested Loop (cost=0.00..157951.71 rows=1 width=120)
 -> Nested Loop (cost=0.00..58298.49 rows=2 width=120)
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a0 (cost=0.00..36761.97
rows=847 width=60)
 Index Cond: ((obj)::text =
'Uv::http://metastore.ingenta.com/ns/structure/Title'::text)
 Filter: (((prop)::text = 'Uv::http://www.w3.org/1999/02/22-rdf-syntax-
ns#type'::text) AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a1 (cost=0.00..25.41 rows=1
width=60)
 Index Cond: ((("outer".subj)::text = (a1.subj)::text) AND ((a1.prop)::text =
'Uv::http://purl.org/dc/elements/1.1/identifier'::text))
 Filter: (((obj)::text =
'Uv::http://metastore.ingenta.com/content/issn/13621718'::text) AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a2 (cost=0.00..49824.98 rows=130
width=112)
 Index Cond: ((a2.obj)::text = ("outer".subj)::text)
 Filter: (((prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf'::text) AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a4 (cost=0.00..49824.98 rows=130
width=112)
 Index Cond: (("outer".subj)::text = (a4.obj)::text)
 Filter: (((prop)::text = 'Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf'::text)
AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a5 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: ((("outer".subj)::text = (a5.subj)::text) AND ((a5.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/startingPage'::text))
 Filter: (graphid = 1)
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a7 (cost=0.00..22.15 rows=1 width=60)
 Index Cond: (((a7.subj)::text = ("outer".subj)::text) AND ((a7.prop)::text =
'Uv::http://www.w3.org/1999/02/22-rdf-syntax-ns#type'::text))
 Filter: (((obj)::text = 'Uv::http://metastore.ingenta.com/ns/structure/Article'::text) AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a8 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: (((a8.subj)::text = ("outer".obj)::text) AND ((a8.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/number'::text))
 Filter: (graphid = 1)
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a6 (cost=0.00..22.15 rows=1 width=60)
 Index Cond: (((a6.subj)::text = ("outer".obj)::text) AND ((a6.prop)::text = 'Uv::http://www.w3.org/1999/02/22-rdf-
syntax-ns#type'::text))
 Filter: (((obj)::text = 'Uv::http://metastore.ingenta.com/ns/structure/Part'::text) AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a3 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: ((("outer".obj)::text = (a3.subj)::text) AND ((a3.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/volume'::text))
 Filter: (graphid = 1)
(35 rows)

3. No Types
Select A0.Subj, A1.Subj, A2.Obj, A3.Obj, A4.Subj, A5.Obj From jena_g1t1_stmt A0, jena_g1t1_stmt A1,
jena_g1t1_stmt A2, jena_g1t1_stmt A3, jena_g1t1_stmt A4, jena_g1t1_stmt A5 Where
A0.Prop='Uv::http://purl.org/dc/elements/1.1/identifier' AND
A0.Obj='Uv::http://metastore.ingenta.com/content/issn/09680519' AND A0.GraphID=1 AND
A1.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf' AND A0.Subj=A1.Obj AND
A1.GraphID=1 AND A1.Subj=A2.Subj AND
A2.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/number' AND A2.GraphID=1 AND
A1.Subj=A3.Subj AND A3.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/volume' AND
A3.GraphID=1 AND A4.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf' AND
A1.Subj=A4.Obj AND A4.GraphID=1 AND A4.Subj=A5.Subj AND
A5.Prop='Uv::http://prismstandard.org/namespaces/1.2/basic/startingPage' AND A5.GraphID=1
 Nested Loop (cost=3411130.77..6719962.25 rows=1538 width=336)
 -> Nested Loop (cost=3411130.77..6714473.80 rows=911 width=396)
 -> Nested Loop (cost=3411130.77..6711220.49 rows=540 width=344)
 -> Hash Join (cost=3411130.77..6709292.61 rows=320 width=232)
 Hash Cond: (("outer".obj)::text = ("inner".subj)::text)
 -> Seq Scan on jena_g1t1_stmt a4 (cost=0.00..3220501.56 rows=839536 width=112)
 Filter: (((prop)::text = 'Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf'::text) AND (graphid
= 1))
 -> Hash (cost=3411129.37..3411129.37 rows=561 width=120)
 -> Merge Join (cost=3407609.57..3411129.37 rows=561 width=120)
 Merge Cond: ("outer"."?column2?" = "inner"."?column3?")
 -> Sort (cost=36810.89..36813.35 rows=984 width=60)
 Sort Key: (a0.subj)::text
 -> Index Scan using jena_g1t1_stmt_ixo on jena_g1t1_stmt a0 (cost=0.00..36761.97 rows=984
width=60)
 Index Cond: ((obj)::text =
'Uv::http://metastore.ingenta.com/content/issn/09680519'::text)
 Filter: (((prop)::text = 'Uv::http://purl.org/dc/elements/1.1/identifier'::text) AND
(graphid = 1))
 -> Sort (cost=3370798.68..3372897.52 rows=839536 width=112)
 Sort Key: (a1.obj)::text
 -> Seq Scan on jena_g1t1_stmt a1 (cost=0.00..3220501.56 rows=839536 width=112)
 Filter: (((prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/isPartOf'::text) AND (graphid = 1))
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a2 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: ((("outer".obj)::text = (a2.subj)::text) AND ((a2.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/number'::text))
 Filter: (graphid = 1)
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a5 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: ((("outer".subj)::text = (a5.subj)::text) AND ((a5.prop)::text =

15

KP/PP 24/04/06

'Uv::http://prismstandard.org/namespaces/1.2/basic/startingPage'::text))
 Filter: (graphid = 1)
 -> Index Scan using jena_g1t1_stmt_ixsp on jena_g1t1_stmt a3 (cost=0.00..6.01 rows=1 width=112)
 Index Cond: (((a3.subj)::text = ("outer".subj)::text) AND ((a3.prop)::text =
'Uv::http://prismstandard.org/namespaces/1.2/basic/volume'::text))
 Filter: (graphid = 1)
(28 rows)

16

	1. The Project
	1.1 Aim
	1.2 Background
	1.3 Problem
	1.4 Requirements
	1.5 Architecture
	1.6 Modelling with RDFS11
	1.7 Scale

	2. Experiences with Jena
	2.1 Why Jena?
	2.2 Challenges
	2.2.1 Insert Performance - Batching
	2.2.2 Ontologies - Memory Problems
	2.2.3 The Object Model – encapsulating Jena code / limiting flexibility
	2.2.4 Prefixes – Suggested addition to Schemagen
	2.3 Performance Testing SPARQL
	Acknowledgments

